Evolutionary changes in heat-inducible gene expression in lines ofEscherichia coliadapted to high temperature

Author:

Riehle Michelle M.1,Bennett Albert F.1,Lenski Richard E.2,Long Anthony D.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, California 92697-2525

2. Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320

Abstract

The involvement of heat-inducible genes, including the heat-shock genes, in the acute response to temperature stress is well established. However, their importance in genetic adaptation to long-term temperature stress is less clear. Here we use high-density arrays to examine changes in expression for 35 heat-inducible genes in three independent lines of Escherichia coli that evolved at high temperature (41.5°C) for 2,000 generations. These lines exhibited significant changes in heat-inducible gene expression relative to their ancestor, including parallel changes in fkpA, gapA, and hslT. As a group, the heat-inducible genes were significantly more likely than noncandidate genes to have evolved changes in expression. Genes encoding molecular chaperones and ATP-dependent proteases, key components of the cytoplasmic stress response, exhibit relatively little expression change; whereas genes with periplasmic functions exhibit significant expression changes suggesting a key role for the extracytoplasmic stress response in the adaptation to high temperature. Following acclimation at 41.5°C, two of the three lines exhibited significantly improved survival at 50°C, indicating changes in inducible thermotolerance. Thus evolution at high temperature led to significant changes at the molecular level in heat-inducible gene expression and at the organismal level in inducible thermotolerance and fitness.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Reference46 articles.

1. Roles of molecular chaperones in cytoplasmic protein folding

2. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server

3. Global Gene Expression Profiling in Escherichia coliK12

4. The heat shock response of Escherichia coli

5. Ashburner M.The effects of heat shock and other stresses on gene activity: an introduction. In:Heat Shock: From Bacteria to Man, edited by Schlesinger MJ, Ashburner M, and Tissieres A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1982, p. 1–9.

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3