Extracellular vesicle-mediated transfer of lncRNA CLDN10-AS1 aggravates low-density lipoprotein-induced vascular endothelial injury

Author:

Fu Xiaoyang1234,Liu Heng1,Fan Yulong1,Yuan Ji3456ORCID

Affiliation:

1. Department of Vascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, China

2. People’s Hospital of Zhengzhou University, Zhengzhou, China

3. Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China

4. School of Clinical Medicine, Henan University, Zhengzhou, China

5. Department of Anaesthesia, Henan Provincial People’s Hospital, Zhengzhou, China

6. Department of Anaesthesia, Central China Fuwai Hospital, Zhengzhou, China

Abstract

Oxidized low-density lipoprotein (ox-LDL) stimulation impairs the oxidation-reduction equilibrium in vascular endothelial cells (VECs) and contributes to atherosclerosis (AS). This study probed the mechanisms of extracellular vesicle (EV)-mediated transfer of lncRNA CLDN10 antisense RNA 1 (CLDN10-AS1) in ox-LDL-induced VEC injury. Initially, VEC injury models were established by treating human umbilical vein endothelial cells (HUVECs) with ox-LDL. EVs were isolated from HUVECs (HUVECs-EVs) and identified. CLDN10-AS1, microRNA (miR)-186, and Yin Yang 1 (YY1) expressions in ox-LDL-treated HUVECs and EVs derived from these cells (ox-EVs) were measured. HUVECs were incubated with EVs, after which the cell viability, apoptosis, and concentrations of proinflammatory cytokines and oxidative stress markers were measured. We discovered that CLDN10-AS1 and YY1 were upregulated in ox-LDL-treated HUVECs, whereas miR-186 was downregulated. ox-EVs treatment elevated CLDN10-AS1 expression in HUVECs and ox-EVs overexpressing CLDN10-AS1 promoted VEC injury. Besides, CLDN10-AS1 is competitively bound to miR-186 and promoted YY1 expression. Rescue experiments revealed that miR-186 overexpression or YY1 suppression partially reversed the roles of ox-EVs overexpressing CLDN10-AS1 in ox-LDL-induced VEC injury. Lastly, clinical serum samples were collected for verification. Overall, CLDN10-AS1 carried by HUVECs-EVs into HUVECs competitively bound to miR-186 to elevate YY1 expression, thereby aggravating ox-LDL-induced VEC injury.

Funder

Henan Medical Science and Technology

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3