Profiling of differentially expressed genes in wound margin biopsies of horses using suppression subtractive hybridization

Author:

Lefebvre-Lavoie Josiane1,Lussier Jacques G.1,Theoret Christine L.1

Affiliation:

1. Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada

Abstract

Disturbed gene expression may disrupt the normal process of repair and lead to pathological situations resulting in excessive scarring. To prevent and treat impaired healing, it is necessary to first define baseline gene expression during normal repair. The objective of this study was to compare gene expression in normal intact skin (IS) and wound margin (WM) biopsies using suppression subtractive hybridization (SSH) to identify genes differentially expressed during wound repair in horses. Tissue samples included both normal IS and biopsies from 7-day-old wounds. IS cDNAs were subtracted from WM cDNAs to establish a subtracted (WM-IS) cDNA library; 226 nonredundant cDNAs were identified. Detection of genes previously shown to be expressed 7 days after trauma, including the pro-α2-chain of type 1 pro-collagen (COL1A2), annexin A2, the pro-α3-chain of type 6 pro-collagen, β-actin, fibroblast growth factor 7, laminin receptor 1, matrix metalloproteinase 1 (MMP1), secreted protein acidic cystein rich, and tissue inhibitor of metalloproteinase 2, supported the validity of the experimental design. A RT-PCR assay confirmed an increase or induction of the cDNAs of specific genes (COL1A2, MMP1, dermatan sulfate proteoglycan 2, cluster differentiation 68, cluster differentiation 163, and disintegrin and metalloproteinase domain 9) within wound biopsies. Among these, COL1A2 and MMP1 had previously been documented in horses; 68.8% of the cDNAs had not previously been attributed a role during wound repair, of which spermidine/spermine- N-acetyltransferase, serin proteinase inhibitor B10, and sorting nexin 9 were highly expressed and whose known functions in other processes made them potential candidates in regulating the proliferative response to wounding. In conclusion, we identified novel genes that are differentially expressed in equine wound biopsies and that may modulate repair. Future experiments must correlate changes in mRNA levels for precise molecules with spatiotemporal protein expression within tissues.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3