Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle

Author:

HAMMOND T. G.123,BENES E.1,O’REILLY K. C.1,WOLF D. A.24,LINNEHAN R. M.24,TAHER A.1,KAYSEN J. H.12,ALLEN P. L.1,GOODWIN T. J.24

Affiliation:

1. Nephrology Section, Department of Medicine

2. Tulane/Veterans Affairs Environmental Astrobiology Center, Center for Bioenvironmental Research, Tulane University Medical Center

3. Veterans Affairs Medical Center, New Orleans, Louisiana

4. National Aeronautics and Space Administration, Johnson Space Center, Houston Texas

Abstract

Hammond, T. G., E. Benes, K. C. O’Reilly, D. A. Wolf, R. M. Linnehan, J. H. Kaysen, P. L. Allen, and T. J. Goodwin. Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle. Physiol Genomics 3: 163–173, 2000.—Three-dimensional suspension culture is a gravity-limited phenomenon. The balancing forces necessary to keep the aggregates in suspension increase directly with aggregate size. This leads to a self-propagating cycle of cell damage by balancing forces. Cell culture in microgravity avoids this trade-off. We determined which genes mediate three-dimensional culture of cell and tissue aggregates in the low-shear stress, low-turbulent environment of actual microgravity. Primary cultures of human renal cortical cells were flown on the space shuttle. Cells grown in microgravity and ground-based controls were grown for 6 days and fixed. RNA was extracted, and automated gene array analysis of the expression of 10,000 genes was performed. A select group of genes were regulated in microgravity. These 1,632 genes were independent of known shear stress response element-dependent genes and heat shock proteins. Specific transcription factors underwent large changes in microgravity including the Wilms’ tumor zinc finger protein, and the vitamin D receptor. A specific group of genes, under the control of defined transcription factors, mediate three-dimensional suspension culture under microgravity conditions.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3