Affiliation:
1. Skirball Institute of Biomolecular Medicine
2. Pediatric Cardiology Program, Department of Pediatrics
3. Departments of Radiology and Pathology, New York University School of Medicine, New York, New York 10016
Abstract
The ability to modify the mouse genome has yielded new insights into the genetic control of mammalian cardiovascular development. However, it is far less understood how genetic factors and their consequent structural changes alter cardiovascular function, a void largely due to the lack of effective noninvasive techniques to assess function in the developing mouse cardiovascular system. In this review, we discuss the recent advances in ultrasound biomicroscopy (UBM)-Doppler echocardiography for analyzing cardiovascular function in the embryonic mouse in utero. “Cardiovascular function” encompasses broad aspects of physiology, including systolic and diastolic cardiac function, distribution of blood flow among various embryonic vascular beds, and vascular bed properties (impedance). A wide range of physiological measurements is possible using UBM-Doppler, but it is clear that the limitations of any single measurement warrant a multi-parameter approach to characterizing cardiovascular function. We further discuss the prospects for UBM-Doppler analysis of alternative vertebrate systems increasingly studied in developmental biology. The ability to correlate cardiovascular physiological phenotypes with their corresponding genotypes should lead to the elucidation of mechanisms underlying normal development, as well as embryonic disease and death.
Publisher
American Physiological Society
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献