Affiliation:
1. Departments of Physiology, University of Michigan, Ann Arbor, Michigan 48109
2. Pediatric Oncology, University of Michigan, Ann Arbor, Michigan 48109
3. Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
Abstract
We hypothesized that genes expressed in pancreatic acinar cells during the initiation of acute pancreatitis determine the severity of the disease. Therefore, we utilized microarrays to identify those genes commonly induced in rat pancreatic acinar cells within 1–4 h in two in vivo models, caerulein and taurocholate administration. This strategy yielded 51 known genes representing a complex array of molecules, including those that are likely to either reduce or increase the severity of the disease. Novel genes identified in the current study included ATF3, BRF1, C/EBPβ, CGRP, EGR-1, ephrinA1, villin2, ferredoxin, latexin, lipocalin, MKP-1, NGFI-B, RhoA, tissue factor (TF), and syndecan. To validate these microarray results, the role of EGR-1 was further investigated using quantitative RT-PCR, Western blotting, and immunocytochemistry. EGR-1 expression occurred within acinar cells and correlated with the development of caerulein-induced acute pancreatitis in rats. Furthermore, the levels of the inflammation-related genes MCP-1, PAI, TF, IL-6, and ICAM-1 and the extent of lung inflammation were reduced during the initiation of caerulein-induced acute pancreatitis in EGR-1-deficient mice. Thus this study identified EGR-1 and several other novel genes likely to be important in the development and severity of acute pancreatitis.
Publisher
American Physiological Society
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献