Erythroid-induced commitment of K562 cells results in clusters of differentially expressed genes enriched for specific transcription regulatory elements

Author:

Addya Sankar1,Keller Margaret A.1,Delgrosso Kathleen1,Ponte Christine M.1,Vadigepalli Rajanikanth2,Gonye Gregory E.2,Surrey Saul1

Affiliation:

1. The Cardeza Foundation for Hematologic Research and Division of Hematology, Department of Medicine, Jefferson Medical College

2. Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Abstract

Understanding regulation of fetal and embryonic hemoglobin expression is critical, since their expression decreases clinical severity in sickle cell disease and β-thalassemia. K562 cells, a human erythroleukemia cell line, can differentiate along erythroid or megakaryocytic lineages and serve as a model for regulation of fetal/embryonic globin expression. We used microarray expression profiling to characterize transcriptomes from K562 cells treated for various times with hemin, an inducer of erythroid commitment. Approximately 5,000 genes were expressed irrespective of treatment. Comparative expression analysis (CEA) identified 899 genes as differentially expressed; analysis by the self-organizing map (SOM) algorithm clustered 425 genes into 8 distinct expression patterns, 322 of which were shared by both analyses. Differential expression of a subset of genes was validated by real-time RT-PCR. Analysis of 5′-flanking regions from differentially expressed genes by PAINT v3.0 software showed enrichment in specific transcription regulatory elements (TREs), some localizing to different expression clusters. This finding suggests coordinate regulation of cluster members by specific TREs. Finally, our findings provide new insights into rate-limiting steps in the appearance of heme-containing hemoglobin tetramers in these cells.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3