Expression of genes involved in excitatory neurotransmission in anoxic crucian carp (Carassius carassius) brain

Author:

Ellefsen Stian12,Sandvik Guro K.1,Larsen Helene K.1,Stensløkken Kåre-Olav3,Hov Dag Are S.1,Kristensen Tom A.4,Nilsson Göran E.1

Affiliation:

1. Physiology Programme, Department of Molecular Biosciences, University of Oslo, Oslo

2. Lillehammer University College, Lillehammer

3. Cancer and Surgical Division, Ullevål University Hospital, Oslo

4. Gene Programme, Department of Molecular Biosciences, University of Oslo, Oslo, Norway

Abstract

The crucian carp, Carassius carassius, survives months without oxygen. During anoxia it needs to keep energy expenditure low, particularly in the brain, with its high rate of ATP use related to neuronal activity. This could be accomplished by reducing neuronal excitability through altered expression of genes involved in excitatory neurotransmission. Through cloning and the use of a recently developed real-time RT-PCR approach, with an external RNA control for normalization, we investigated the effect of 1 and 7 days of anoxia (12°C) on the expression of 29 genes, including 8 3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits, 6 N-methyl-d-aspartate (NMDA) receptor subunits, 7 voltage-gated sodium and calcium channels, 4 glutamate transporters, and 4 genes involved in NMDA receptor-mediated neuroplasticity. The subunits of the majority of the gene families had expression profiles similar to those observed in the mammalian brain and showed remarkably stable expression during anoxia. This suggests that the genes may have similar functions in crucian carp and mammals, and that the excitatory abilities of the crucian carp brain are retained during anoxia. Although the data generally argue against profound neural depression (“channel arrest”), NMDA receptor subunit (NR) expression showed features that could mediate reduced neural excitability. Primarily, the NR2 subunit expression, which was dominated by NR2B and NR2D, resembled that seen in hypoxia-tolerant neonatal rats, and decreased anoxic expression of NR1, NR2C, and NR3A indicated reduced numbers of functional NMDA receptors. We also report the full-length sequence of crucian carp NR1 mRNA and a novel NR1 splice cassette introducing an N-glycosylation site into the extracellular S1S2 domain.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3