Delineating the angiogenic gene expression profile before pulmonary vascular remodeling in a lamb model of congenital heart disease

Author:

Tian Jing1,Fratz Sohrab2,Hou Yali1,Lu Qing1,Görlach Agnes2,Hess John2,Schreiber Christian3,Datar Sanjeev A.4,Oishi Peter4,Nechtman John5,Podolsky Robert5,She Jin-Xiong5,Fineman Jeffrey R.46,Black Stephen M.1

Affiliation:

1. Pulmonary Vascular Disease Program, Vascular Biology Center and

2. Pediatric Cardiology and

3. Cardiac Surgery, Deutsches Herzzentrum München an der Technischen Universität München, Munich, Germany; and

4. Pediatrics and

5. Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia;

6. Cardiovascular Research Institute, University of California, San Francisco, California

Abstract

Disordered angiogenesis is implicated in pulmonary vascular remodeling secondary to congenital heart diseases (CHD). However, the underlying genes are not well delineated. We showed previously that an ovine model of CHD with increased pulmonary blood flow (PBF, Shunt) has an “angiogenesis burst” between 1 and 4 wk of age. Thus we hypothesized that the increased PBF elicited a proangiogenic gene expression profile before onset of vessel growth. To test this we utilized microarray analysis to identify genes that could be responsible for the angiogenic response. Total RNA was isolated from lungs of Shunt and control lambs at 3 days of age and hybridized to Affymetrix gene chips for microarray analyses ( n = 8/group). Eighty-nine angiogenesis-related genes were found to be upregulated and 26 angiogenesis-related genes downregulated in Shunt compared with control lungs (cutting at 1.2-fold difference, P < 0.05). We then confirmed upregulation of proangiogenic genes FGF2, Angiopoietin2 (Angpt2), and Birc5 at mRNA and protein levels and upregulation of ccl2 at mRNA level in 3-day Shunt lungs. Furthermore, we found that pulmonary arterial endothelial cells (PAEC) isolated from fetal lambs exhibited increased expression of FGF2, Angpt2, Birc5, and ccl2 and enhanced angiogenesis when exposed to elevated shear stress (35 dyn/cm2) compared with cells exposed to more physiological shear stress (20 dyn/cm2). Finally, we demonstrated that blocking FGF2, Angpt2, Birc5, or ccl2 signaling with neutralizing antibodies or small interfering RNA (siRNA) significantly decreased the angiogenic response induced by shear stress. In conclusion, we have identified a “proangiogenic” gene expression profile in a lamb model of CHD with increased PBF that precedes onset of pulmonary vascular remodeling. Our data indicate that FGF2, Angpt2, Birc5, and ccl2 may play important roles in the angiogenic response.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3