Blood pressure and heart rate QTL in mice of the B6/D2 lineage: sex differences and environmental influences

Author:

Blizard David A.12,Lionikas Arimantas1,Vandenbergh David J.132,Vasilopoulos Terrie13,Gerhard Glenn S.4,Griffith James W.5,Klein Laura C.13,Stout Joseph T.1,Mack Holly A.13,Lakoski Joan M.6,Larsson Lars17,Spicer Jeanne M.1,Vogler George P.13,McClearn Gerald E.132

Affiliation:

1. Center for Developmental & Health Genetics, The Pennsylvania State University, University Park

2. Inter-Collegiate Program in Genetics, The Pennsylvania State University, University Park

3. Department of Biobehavioral Health, The Pennsylvania State University, University Park

4. Geisinger Medical Center, Weis Center for Research, Danville

5. Department of Comparative Medicine, Pennsylvania State College of Medicine, Hershey

6. Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

7. Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden

Abstract

A quantitative trait locus (QTL) approach was used to define the genetic architecture underlying variation in systolic blood pressure (SBP) and heart rate (HR), measured indirectly on seven occasions by the tail cuff procedure. The tests were conducted in 395 F2adult mice (197 males, 198 females) derived from a cross of the C57BL/6J (B6) and DBA/2J (D2) strains and in 22 BXD recombinant-inbred (RI) strains. Interval mapping of F2data for the first 5 days of measurement nominated one statistically significant and one suggestive QTL for SBP on chromosomes (Chr) 4 and 14, respectively, and two statistically significant QTL for HR on Chr 1 (which was specific to female mice) and Chr 5. New suggestive QTL emerged for SBP on Chr 3 (female-specific) and 8 and for HR on Chr 11 for measurements recorded several weeks after mice had undergone stressful blood sampling procedures. The two statistically significant HR QTL were confirmed by analyses of BXD RI strain means. Male and female F2mice did not differ in SBP or HR but RI strain analyses showed pronounced strain-by-sex interactions and a negative genetic correlation between the two measures in both sexes. Evidence for a role for mitochondrial DNA was found for both HR and SBP. QTL for HR and SBP may differ in males and females and may be sensitive to different environmental contexts.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3