Genome-wide analysis of gene transcription in the hypothalamus

Author:

Bischof Jocelyn M.1,Wevrick Rachel1

Affiliation:

1. Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada

Abstract

As the genomic regions containing loci predisposing to obesity-related traits are mapped in human population screens and mouse genetic studies, identification of susceptibility genes will increasingly be facilitated by bioinformatic methods. We hypothesized that candidate genes can be prioritized by their expression levels in tissues of central importance in obesity. Our objective was to develop a combined bioinformatics and molecular paradigm to identify novel genes as candidates for murine or human obesity genetic modifiers based on their differential expression patterns in the hypothalamus compared with other murine tissues. We used bioinformatics tools to search publicly available gene expression databases using criteria designed to identify novel genes differentially expressed in the hypothalamus. We used RNA methods to determine their expression sites and levels of expression in the hypothalamus of the murine brain. We identified the chromosomal location of the novel genes in mice and in humans and compared these locations with those of genetic loci predisposing to obesity-related traits. We developed a search strategy that correctly identified a set of genes known to be important in hypothalamic function as well as a candidate gene for Prader-Willi syndrome that was not previously identified as differentially expressed in the hypothalamus. Using this same strategy, we identified and characterized a set of 11 genes not previously known to be differentially expressed in the murine hypothalamus. Our results demonstrate the feasibility of combined bioinformatics and molecular approaches to the identification of genes that are candidates for obesity-related disorders in humans and mice.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3