Analysis of molecular profile data using generative and discriminative methods

Author:

Moler E. J.1,Chow M. L.1,Mian I. S.1

Affiliation:

1. Department of Cell and Molecular Biology, Radiation Biology and Environmental Toxicology Group, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Abstract

A modular framework is proposed for modeling and understanding the relationships between molecular profile data and other domain knowledge using a combination of generative (here, graphical models) and discriminative [Support Vector Machines (SVMs)] methods. As illustration, naive Bayes models, simple graphical models, and SVMs were applied to published transcription profile data for 1,988 genes in 62 colon adenocarcinoma tissue specimens labeled as tumor or nontumor. These unsupervised and supervised learning methods identified three classes or subtypes of specimens, assigned tumor or nontumor labels to new specimens and detected six potentially mislabeled specimens. The probability parameters of the three classes were utilized to develop a novel gene relevance, ranking, and selection method. SVMs trained to discriminate nontumor from tumor specimens using only the 50–200 top-ranked genes had the same or better generalization performance than the full repertoire of 1,988 genes. Approximately 90 marker genes were pinpointed for use in understanding the basic biology of colon adenocarcinoma, defining targets for therapeutic intervention and developing diagnostic tools. These potential markers highlight the importance of tissue biology in the etiology of cancer. Comparative analysis of molecular profile data is proposed as a mechanism for predicting the physiological function of genes in instances when comparative sequence analysis proves uninformative, such as with human and yeast translationally controlled tumour protein. Graphical models and SVMs hold promise as the foundations for developing decision support systems for diagnosis, prognosis, and monitoring as well as inferring biological networks.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3