Gene expression analysis suggests that 1,25-dihydroxyvitamin D3reverses experimental autoimmune encephalomyelitis by stimulating inflammatory cell apoptosis

Author:

Spach Karen M.1,Pedersen Laura B.2,Nashold Faye E.2,Kayo Tsuyoshi3,Yandell Brian S.4,Prolla Tomas A.3,Hayes Colleen E.2

Affiliation:

1. Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706

2. Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

3. Department of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706

4. Department of Horticulture and Statistics, University of Wisconsin-Madison, Madison, Wisconsin 53706

Abstract

Multiple sclerosis (MS) is a debilitating autoimmune disease of the central nervous system (CNS) that develops in genetically susceptible individuals who are exposed to undefined environmental risk factors. Epidemiological, genetic, and biological evidence suggests that insufficient vitamin D may be an MS risk factor. However, little is known about how vitamin D might be protective in MS. We hypothesized that 1,25-dihydroxyvitamin D3[1,25-(OH)2D3] might regulate gene expression patterns in a manner that would resolve inflammation. To test this hypothesis, experimental autoimmune encephalomyelitis (EAE) was induced in mice, 1,25-(OH)2D3or a placebo was administered, and 6 h later, DNA microarray hybridization was performed with spinal cord RNA to analyze the gene expression patterns. At this time, clinical, histopathological, and biological studies showed that the two groups did not differ in EAE disease, but changes in several 1,25-(OH)2D3-responsive genes indicated that the 1,25-(OH)2D3had reached the CNS. Compared with normal mice, placebo-treated mice with EAE showed increased expression of many immune system genes, confirming the acute inflammation. When 1,25-(OH)2D3was administered, several genes like glial fibrillary acidic protein and eukaryotic initiation factor 2α kinase 4, whose expression increased or decreased with EAE, returned to homeostatic levels. Also, two genes with pro-apoptotic functions, calpain-2 and caspase-8-associated protein, increased significantly. A terminal deoxynucleotidyl transferase-mediated dUTP nicked end labeling study detected increased nuclear fragmentation in the 1,25-(OH)2D3-treated samples, confirming increased apoptosis. Together, these results suggest that sensitization of inflammatory cells to apoptotic signals may be one mechanism by which the 1,25-(OH)2D3resolved EAE.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3