Affiliation:
1. Department of Pediatrics (Section of Respiratory Medicine) and Neuroscience, University of California San Diego, La Jolla
2. Department of Psychiatry, University of California San Diego, La Jolla
3. The Rady Children's Hospital-San Diego, San Diego, California
Abstract
Hypoxia is a hallmark of respiratory, neurological, or hematological diseases as well as life at high altitude. For example, chronic constant hypoxia (CCH) occurs in chronic lung diseases or at high altitude, whereas chronic intermittent hypoxia (CIH) occurs in diseases such as sleep apnea or sickle cell disease. Despite the fact that such conditions are frequent, the cellular and molecular mechanisms underlying the effect of hypoxia, whether constant or intermittent, are not well understood. In this study, we first determined the effect of CCH and CIH on global gene expression in different regions of mouse brain using microarrays and then investigated the biological role of genes of interest. We found that: 1) in the cortical region, the expression level of 80 genes was significantly altered by CIH (16 up- and 64 downregulated), and this number increased to 137 genes following CCH (34 up- and 103 downregulated); 2) a similar number of gene alterations was identified in the hippocampal area, and the majority of the changes in this region were upregulations; 3) two genes (Sspn and Ttc27) were downregulated in both brain regions and following both treatments; and 4) RNA interference-mediated knockdown of Sspn increased cell death in hypoxia in a cell culture system. We conclude that CIH or CCH induced significant and distinguishable alterations in gene expression in cortex and hippocampus and that Sspn seems to play a critical role in inducing cell death under hypoxic conditions.
Publisher
American Physiological Society
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献