Gene expression in mouse brain following chronic hypoxia: role of sarcospan in glial cell death

Author:

Zhou Dan1,Wang Jiyi1,Zapala Matthew A.2,Xue Jin1,Schork Nicholas J.2,Haddad Gabriel G.13

Affiliation:

1. Department of Pediatrics (Section of Respiratory Medicine) and Neuroscience, University of California San Diego, La Jolla

2. Department of Psychiatry, University of California San Diego, La Jolla

3. The Rady Children's Hospital-San Diego, San Diego, California

Abstract

Hypoxia is a hallmark of respiratory, neurological, or hematological diseases as well as life at high altitude. For example, chronic constant hypoxia (CCH) occurs in chronic lung diseases or at high altitude, whereas chronic intermittent hypoxia (CIH) occurs in diseases such as sleep apnea or sickle cell disease. Despite the fact that such conditions are frequent, the cellular and molecular mechanisms underlying the effect of hypoxia, whether constant or intermittent, are not well understood. In this study, we first determined the effect of CCH and CIH on global gene expression in different regions of mouse brain using microarrays and then investigated the biological role of genes of interest. We found that: 1) in the cortical region, the expression level of 80 genes was significantly altered by CIH (16 up- and 64 downregulated), and this number increased to 137 genes following CCH (34 up- and 103 downregulated); 2) a similar number of gene alterations was identified in the hippocampal area, and the majority of the changes in this region were upregulations; 3) two genes (Sspn and Ttc27) were downregulated in both brain regions and following both treatments; and 4) RNA interference-mediated knockdown of Sspn increased cell death in hypoxia in a cell culture system. We conclude that CIH or CCH induced significant and distinguishable alterations in gene expression in cortex and hippocampus and that Sspn seems to play a critical role in inducing cell death under hypoxic conditions.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3