Identification of gene sets and pathways associated with lactation performance in mice

Author:

Wei Jerry1,Ramanathan Palaniappan1,Martin Ian C.1,Moran Christopher1,Taylor Rosanne M.1,Williamson Peter1

Affiliation:

1. Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia

Abstract

Mammary transcriptome analyses across the lactation cycle and transgenic animal studies have identified candidate genes for mammogenesis, lactogenesis and involution; however, there is a lack of information on pathways that contribute to lactation performance. Previously we have shown significant differences in lactation performance, mammary gland histology, and gene expression profiles during lactation [lactation day 9 (L9)] between CBA/CaH (CBA) and the superior performing QSi5 strains of mice. In the present study, we compared these strains at midpregnancy [pregnancy day 12 (P12)] and utilized these data along with data from a 14th generation of intercross (AIL) to develop an integrative analysis of lactation performance. Additional analysis by quantitative reverse transcription PCR examined the correlation between expression profiles of lactation candidate genes and lactation performance across six inbred strains of mice. The analysis demonstrated that the mammary epithelial content per unit area was similar between CBA and QSi5 mice at P12, while differential expression was detected in 354 mammary genes (false discovery rate < 0.1). Gene ontology and functional annotation analyses showed that functional annotation terms associated with cell division and proliferation were the most enriched in the differentially expressed genes between these two strains at P12. Further analysis revealed that genes associated with neuroactive ligand-receptor interaction and calcium signaling pathways were significantly upregulated and positively correlated with lactation performance, while genes associated with cell cycle and DNA replication pathways were downregulated and positively correlated with lactation performance. There was also a significant negative correlation between Grb10 expression and lactation performance. In summary, using an integrative genomic approach we have identified key genes and pathways associated with lactation performance.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3