Atlas of gene expression in the mouse kidney: new features of glomerular parietal cells

Author:

Cheval Lydie12,Pierrat Fabien3,Dossat Carole4,Genete Mathieu12,Imbert-Teboul Martine12,Duong Van Huyen Jean-Paul5,Poulain Julie4,Wincker Patrick4,Weissenbach Jean4,Piquemal David3,Doucet Alain12

Affiliation:

1. UPMC Univ Paris 06, Univ Paris Descartes and INSERM, UMRS 872, Centre de recherche des Cordeliers;

2. CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris;

3. Skuld-Tech, Montpellier;

4. CEA, DSV, IG, Genoscope, Evry; and

5. Hôpital européen Georges Pompidou, Paris, France

Abstract

To gain molecular insight into kidney function, we performed a high-resolution quantitative analysis of gene expression in glomeruli and nine different nephron segments dissected from mouse kidney using Serial Analysis of Gene Expression (SAGE). We also developed dedicated bioinformatics tools and databases to annotate mRNA tags as transcripts. Over 800,000 mRNA SAGE tags were sequenced corresponding to >20,000 different mRNA tags present at least twice in at least one library. Hierarchical clustering analysis of tags demonstrated similarities between the three anatomical subsegments of the proximal tubule, between the cortical and medullary segments of the thick ascending limb of Henle's loop, and between the three segments constituting the aldosterone-sensitive distal nephron segments, whereas the glomerulus and distal convoluted tubule clusterized independently. We also identified highly specific mRNA markers of each subgroup of nephron segments and of most nephron segments. Tag annotation also identified numbers of putative antisense mRNAs. This database constitutes a reference resource in which the quantitative expression of a given gene can be compared with that of other genes in the same nephron segment, or between different segments of the nephron. To illustrate possible applications of this database, we performed a deeper analysis of the glomerulus transcriptome that unexpectedly revealed expression of several ion and water carriers; within the glomerulus, they were found to be preferentially expressed in the parietal sheet. It also revealed the major role of the zinc finger transcription factor Wt1 in the specificity of gene expression in the glomerulus. Finally, functional annotation of glomerulus-specific transcripts suggested a high proliferation activity of glomerular cells. Immunolabeling for PCNA confirmed a high percentage of proliferating cells in the glomerulus parietal sheet.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3