Affiliation:
1. Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
Abstract
Hypertension, or elevated blood pressure, constitutes a major public health burden that affects more than 1 billion people worldwide and contributes to ~9 million deaths annually. Hereditary factors are thought to contribute to up to 50% of interindividual blood pressure variability. Blood pressure in the general population approximately shows a normal distribution and is thought to be a polygenic trait. In rare cases, early-onset hypertension or hypotension are inherited as Mendelian traits. The identification of the underlying Mendelian genes and variants has contributed to our understanding of the physiology of blood pressure regulation, emphasizing renal salt handling and the renin angiotensin aldosterone system as players in the determination of blood pressure. Genome-wide association studies (GWAS) have revealed more than 100 variants that are associated with blood pressure, typically with small effect sizes, which cumulatively explain ~3.5% of blood pressure trait variability. Several GWAS associations point to a role of the vasculature in the pathogenesis of hypertension. Despite these advances, the majority of the genetic contributors to blood pressure regulation are currently unknown; whether large-scale exome or genome sequencing studies will unravel these factors remains to be determined.
Funder
Ministerium für Innovation, Wissenschaft und Forschung des Landes NRW
Publisher
American Physiological Society
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献