Both isoforms of ketohexokinase are dispensable for normal growth and development

Author:

Diggle C. P.1,Shires M.1,McRae C.2,Crellin D.1,Fisher J.2,Carr I. M.1,Markham A. F.1,Hayward B. E.1,Asipu A.1,Bonthron D. T.1

Affiliation:

1. Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, and

2. School of Chemistry, University of Leeds, Leeds, United Kingdom

Abstract

Dietary fructose intake has dramatically increased over recent decades and is implicated in the high rates of obesity, hypertension, and type 2 diabetes (metabolic syndrome) in Western societies. The molecular determinants of this epidemiologic correlation are incompletely defined, but high-flux fructose catabolism initiated by ketohexokinase (Khk, fructokinase) is believed to be important. The Khk gene encodes two enzyme isoforms with distinctive substrate preferences, the independent physiological roles of which are unclear. To investigate this question, and for testing the importance of Khk in metabolic syndrome, isoform-selective genetic lesions would be valuable. Two deficiency alleles of the mouse Khk gene were designed. The first, Khk3a, uses targeted “knock-in” of a premature termination codon to induce a selective deficiency of the minor Khk-A isoform, preserving the major Khk-C isoform. The second, the KhkΔallele, ablates both isoforms. Mice carrying each of these Khk-deficiency alleles were generated and validated at the DNA, RNA, and protein levels. Comparison between normal and knockout animals confirmed the specificity of the genetic lesions and allowed accurate analysis of the cellular distribution of Khk within tissues such as gut and liver. Both Khk3a/3aand KhkΔ/Δhomozygous mice were healthy and fertile and displayed minimal biochemical abnormalities under basal dietary conditions. These studies are the first demonstration that neither Khk isoform is required for normal growth and development. The new mouse models will allow direct testing of various hypotheses concerning the role of this enzyme in metabolic syndrome in humans and the value of Khk as a pharmacological target.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3