Epigenetic differences between male and female bovine blastocysts produced in vitro

Author:

Bermejo-Álvarez P.1,Rizos D.1,Rath D.2,Lonergan P.3,Gutierrez-Adan A.1

Affiliation:

1. Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain

2. Department of Biotechnology, Institute of Animal Breeding (FAL), Neustadt, Germany

3. School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Ireland

Abstract

Epigenetic differences between male and female bovine blastocysts provide a plausible link between physiological and gene transcription differences observed between male and female embryos. The aim of this study was to examine sex-related epigenetic differences in bovine blastocysts produced in vitro. Oocytes were matured in vitro and inseminated with frozen-thawed sex-sorted (X or Y) and unsorted (control) bull sperm. Zygotes were cultured to blastocyst stage and were analyzed for embryo sexing, mtDNA content, telomere lengths, methylation analysis, and quantification of mRNA transcripts of DNA methyltransferases (Dnmt1, Dnmt3a, Dnmt3b) HMT1 hnRNP methyltransferase-like 2 (Hmt1), and interleukin enhancer binding factor 3 (Ilf3). There was a difference ( P < 0.05) in the mean mtDNA copy number between male (410,000 ± 23,000) and female (360,000 ± 21,000) blastocysts. Telomere length was shorter in male blastocysts ( P < 0.01). The level of methylation in a sequence near a variable number of tandem repeats minisatellite region [variable number of tandem repeats (VNTR)] in males (39.8% ± 4.8) was higher than in females (23.7% ± 3.1) ( P < 0.05); however, no differences were found in other regions analyzed. Moreover, transcription differences between sexes were observed for Dnmt3a, Dnmt3b, Hmt1, and Ilf3. These results provide evidence of epigenetic differences between male and female bovine in vitro produced embryos and suggest that before initiation of gonadal differentiation, epigenetic events may modulate the difference between speed of development, metabolism, and transcription observed during preimplantation development between male and female embryos.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3