Genetic susceptibility to S. aureus mastitis in sheep: differential expression of mammary epithelial cells in response to live bacteria or supernatant

Author:

Bonnefont Cécile M. D.123,Rainard Pascal45,Cunha Patricia45,Gilbert Florence B.45,Toufeer Mehdi12,Aurel Marie-Rose6,Rupp Rachel3,Foucras Gilles12

Affiliation:

1. Université de Toulouse, Institut National Polytechnique (INP), École Nationale Vétérinaire de Toulouse (ENVT), Unité Mixte de Recherche (UMR)1225, Interactions Hôtes - Agents Pathogènes (IHAP);

2. Institut National de la Recherche Agronomique (INRA), UMR1225, IHAP, Toulouse;

3. INRA, Unité de Recherche (UR) 631, Station d'Amélioration Génétique des Animaux (SAGA), Castanet-Tolosan;

4. INRA, UR1282, Infectiologie et Santé Publique (ISP), Nouzilly;

5. Université François Rabelais de Tours, UMR 1282, ISP, Tours; and

6. INRA, Unité Expérimentale 321, Domaine expérimental de La Fage, Roquefort, France

Abstract

Staphylococcus aureus is a prevalent pathogen for mastitis in dairy ruminants and is responsible for both clinical and subclinical mastitis. Mammary epithelial cells (MEC) represent not only a physical barrier against bacterial invasion but are also active players of the innate immune response permitting infection clearance. To decipher their functions in general and in animals showing different levels of genetic predisposition to Staphylococcus in particular, MEC from ewes undergoing a divergent selection on milk somatic cell count were stimulated by S. aureus . MEC response was also studied according to the stimulation condition with live bacteria or culture supernatant. The early MEC response was studied during a 5 h time course by microarray to identify differentially expressed genes with regard to the host genetic background and as a function of the conditions of stimulation. In both conditions of stimulation, metabolic processes were altered, the apoptosis-associated pathways were considerably modified, and inflammatory and immune responses were enhanced with the upregulation of il1a, il1b, and tnfa and several chemokines known to enhance neutrophil ( cxcl8) or mononuclear leukocyte ( ccl20) recruitment. Genes associated with oxidative stress were increased after live bacteria stimulation, whereas immune response-related genes were higher after supernatant stimulation in the early phase. Only 20 genes were differentially expressed between Staphylococcus spp-mastitis resistant and susceptible animals without any clearly defined role on the control of infection. To conclude, this suggests that MEC may not represent the cell type at the origin of the difference of mastitis susceptibility, at least as demonstrated in our genetic model. Supernatant or heat-killed S. aureus produce biological effects that are essentially different from those induced by live bacteria.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3