Shared aspects of mRNA expression associated with oocyte maturation failure in humans and rhesus monkeys indicating compromised oocyte quality

Author:

Ruebel Meghan L.1ORCID,Zambelli Filippo2,Schall Peter Z.1,Barragan Montserrat2,VandeVoort Catherine A.34,Vassena Rita2,Latham Keith E.1ORCID

Affiliation:

1. Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan

2. Clinica EUGIN, Barcelona, Spain

3. California National Primate Research Center, University of California, Davis, California

4. Department of Obstetrics and Gynecology, University of California, Davis, California

Abstract

Oocyte maturation failure observed in assisted reproduction technology (ART) cycles can limit the number of quality oocytes obtained and present a pronounced barrier for some patients. The potential exists to use unmatured oocytes for ART through in vitro maturation. Understanding the molecular basis of oocyte maturation failure is pertinent to minimizing this loss of oocytes and considerations of whether such oocytes can be used safely for ART. We identified shared transcriptome abnormalities for rhesus monkey and human failed-to-mature (FTM) oocytes relative to healthy matured MII stage oocytes. We discovered that, although the number of shared affected genes was comparatively small, FTM oocytes in both species shared effects for several pathways and functions, including predicted activation of oxidative phosphorylation (OxPhos) with additional effects on mitochondrial function, lipid metabolism, transcription, nucleotide excision repair, endoplasmic reticulum stress, unfolded protein response, and cell viability. RICTOR emerged as a prominent upstream regulator with predicted inhibition across all analyses. Alterations in KDM5A, MTOR, MTORC1, INSR, CAB39L, and STK11 activities were implicated along with RICTOR in modulating mitochondrial activity and OxPhos. Defects in cell cycle progression were not a prominent feature of FTM oocytes. These results identify a common set of transcriptome abnormalities associated with oocyte maturation failure. While our results do not demonstrate causality, they indicate that fundamental aspects of cellular function are abnormal in FTM oocytes and raise significant concerns about the potential risks of using FTM oocytes for ART.

Funder

National Institutes of Health, Eunice Kennedy Shriver Institute of Child Health and Human Development

Clinica EUGIN

Michigan State University AgBioResearch

Michigan State University

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3