Affiliation:
1. Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
Abstract
Forward masking is traditionally measured with a detection task in which the addition of a preceding masking sound results in an increased signal-detection threshold. Little is known about the influence of forward masking on localization of free-field sound for human or animal subjects. Here we recorded gaze shifts of two head-unrestrained cats during localization using a search-coil technique. A broadband (BB) noise masker was presented straight ahead. A brief signal could come from 1 of the 17 speaker locations in the frontal hemifield. The signal was either a BB or a band-limited (BL) noise. For BB targets, the presence of the forward masker reduced localization accuracy at almost all target levels (20 to 80 dB SPL) along both horizontal and vertical dimensions. Temporal decay of masking was observed when a 15-ms interstimulus gap was added between the end of the masker and the beginning of the target. A large effect of forward masking was also observed for BL targets with low (0.2–2 kHz) and mid (2–7 kHz) frequencies, indicating that the interaural timing cue is susceptible to forward masking. Except at low sound levels, a small or little effect was observed for high-frequency (7–15 kHz) targets, indicating that the interaural level and the spectral cues in that frequency range remained relatively robust. Our findings suggest that different localization mechanisms can operate independently in a complex listening environment.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献