LTD at mossy fiber synapses onto stratum lucidum interneurons requires TrkB and retrograde endocannabinoid signaling

Author:

Pan Enhui1,Zhao Zirun2,McNamara James O.213

Affiliation:

1. Department of Neurology, Duke University School of Medicine, Durham, North Carolina

2. Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina

3. Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina

Abstract

Hippocampal mossy fiber axons simultaneously activate CA3 pyramidal cells and stratum lucidum interneurons (SLINs), the latter providing feedforward inhibition to control CA3 pyramidal cell excitability. Filopodial extensions of giant boutons of mossy fibers provide excitatory synaptic input to the SLIN. These filopodia undergo extraordinary structural plasticity causally linked to execution of memory tasks, leading us to seek the mechanisms by which activity regulates these synapses. High-frequency stimulation of the mossy fibers induces long-term depression (LTD) of their calcium-permeable AMPA receptor synapses with SLINs; previous work localized the site of induction to be postsynaptic and the site of expression to be presynaptic. Yet, the underlying signaling events and the identity of the retrograde signal are incompletely understood. We used whole cell recordings of SLINs in hippocampal slices from wild-type and mutant mice to explore the mechanisms. Genetic and pharmacologic perturbations revealed a requirement for both the receptor tyrosine kinase TrkB and its agonist, brain-derived neurotrophic factor (BDNF), for induction of LTD. Inclusion of inhibitors of Trk receptor kinase and PLC in the patch pipette prevented LTD. Endocannabinoid receptor antagonists and genetic deletion of the CB1 receptor prevented LTD. We propose a model whereby release of BDNF from mossy fiber filopodia activates TrkB and PLCγ1 signaling postsynaptically within SLINs, triggering synthesis and release of an endocannabinoid that serves as a retrograde signal, culminating in reduced glutamate release. Insights into the signaling pathways by which activity modifies function of these synapses will facilitate an understanding of their contribution to the local circuit and behavioral consequences of hippocampal granule cell activity. NEW & NOTEWORTHY We investigated signaling mechanisms underlying plasticity of the hippocampal mossy fiber filopodial synapse with interneurons in stratum lucidum. High-frequency stimulation of the mossy fibers induces long-term depression of this synapse. Our findings are consistent with a model in which brain-derived neurotrophic factor released from filopodia activates TrkB of a stratum lucidum interneuron; the ensuing activation of PLCγ1 induces synthesis of an endocannabinoid, which provides a retrograde signal leading to reduced release of glutamate presynaptically.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3