Neuronal Sodium Leak Channel Is Responsible for the Detection of Sodium in the Rat Median Preoptic Nucleus

Author:

Tremblay Christina1,Berret Emmanuelle1,Henry Mélaine1,Nehmé Benjamin1,Nadeau Louis1,Mouginot Didier1

Affiliation:

1. Centre de Recherche du CHUQ (CHUL)—Neurosciences and Faculté de Médecine—Département de Psychiatrie/Neurosciences; Université Laval, Québec, Québec, Canada

Abstract

Sodium (Na+) ions are of primary importance for hydromineral and cardiovascular homeostasis, and the level of Na+ in the body fluid compartments [plasma and cerebrospinal fluid (CSF)] is precisely monitored in the hypothalamus. Glial cells seem to play a critical role in the mechanism of Na+ detection. However, the precise role of neurons in the detection of extracellular Na+ concentration ([Na+]out) remains unclear. Here we demonstrate that neurons of the median preoptic nucleus (MnPO), a structure in close contact with the CSF, are specific Na+ sensors. Electrophysiological recordings were performed on dissociated rat MnPO neurons under isotonic [Na+] (100 mM NaCl) with local application of hypernatriuric (150, 180 mM NaCl) or hyponatriuric (50 mM NaCl) external solution. The hyper- and hyponatriuric conditions triggered an in- and an outward current, respectively. The reversal potential of the current matched the equilibrium potential of Na+, indicating that a change in [Na+]out modified the influx of Na+ in the MnPO neurons. The conductance of the Na+ current was not affected by either the membrane potential or the [Na+]out. Moreover, the channel was highly selective for lithium over guanidinium. Together, these data identified the channel as a Na+ leak channel. A high correlation between the electrophysiological recordings and immunofluorescent labeling for the NaX channel in dissociated MnPO neurons strongly supports this channel as a candidate for the Na+ leak channel responsible for the Na+-sensing ability of rat MnPO neurons. The absence of NaX labeling and of a specific current evoked by a change in [Na+]out in mouse MnPO neurons suggests species specificity in the hypothalamus structures participating in central Na+ detection.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3