Affiliation:
1. Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Calgary, Alberta, Canada
2. School of Kinesiology and Health Studies, Queens University, Kingston, Ontario, Canada
Abstract
In new walking contexts, the nervous system can adapt preferred gaits to minimize energetic cost. During treadmill walking, this optimization is not usually spontaneous but instead requires experience with the new energetic cost landscape. Experimenters can provide subjects with the needed experience by prescribing new gaits or instructing them to explore new gaits. Yet in familiar walking contexts, people naturally prefer energetically optimal gaits: the nervous system can optimize cost without an experimenter’s guidance. Here we test the hypothesis that the natural gait variability of overground walking provides the nervous system with sufficient experience with new cost landscapes to initiate spontaneous minimization of energetic cost. We had subjects walk over paths of varying terrain while wearing knee exoskeletons that penalized walking as a function of step frequency. The exoskeletons created cost landscapes with minima that were, on average, 8% lower than the energetic cost at the initially preferred gaits and achieved at walking speeds and step frequencies that were 4% lower than the initially preferred values. We found that our overground walking trials amplified gait variability by 3.7-fold compared with treadmill walking, resulting in subjects gaining greater experience with new cost landscapes, including frequent experience with gaits at the new energetic minima. However, after 20 min and 2.0 km of walking in the new cost landscapes, we observed no consistent optimization of gait, suggesting that natural gait variability during overground walking is not always sufficient to initiate energetic optimization over the time periods and distances tested in this study. NEW & NOTEWORTHY While the nervous system can continuously optimize gait to minimize energetic cost, what initiates this optimization process during every day walking is unknown. Here we tested the hypothesis that the nervous system leverages the natural variability in gait experienced during overground walking to converge on new energetically optimal gaits created using exoskeletons. Contrary to our hypothesis, we found that participants did not adapt toward optimal gaits: natural variability is not always sufficient to initiate spontaneous energy optimization.
Funder
Michael Smith Foundation for Health Research (MSFHR)
Vanier Canadian Graduate Scholarship
DOD | Army Research Office (ARO)
NSERC Discovery Grant
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献