Modified Sensory Processing in the Barrel Cortex of the Adult Mouse After Chronic Whisker Stimulation

Author:

Quairiaux Charles,Armstrong-James Michael,Welker Egbert

Abstract

Chronic stimulation of a mystacial whisker follicle for 24 h induces structural and functional changes in layer IV of the corresponding barrel, with an insertion of new inhibitory synapses on spines and a depression of neuronal responses to the stimulated whisker. Under urethane anesthesia, we analyzed how sensory responses of single units are affected in layer IV and layers II & III of the stimulated barrel column as well as in adjacent columns. In the stimulated column, spatiotemporal characteristics of the activation evoked by the stimulated whisker are not altered, although spontaneous activity and response magnitude to the stimulated whisker are decreased. The sensitivity of neurons for the deflection of this whisker is not altered but the dynamic range of the response is reduced as tested by varying the amplitude and repetition rate of the deflection. Responses to deflection of nonstimulated whiskers remain unaltered with the exception of in-row whisker responses that are depressed in the column corresponding to the stimulated whisker. In adjacent nonstimulated columns, neuronal activity remains unaltered except for a diminished response of units in layer II/III to deflection of the stimulated whisker. From these results we propose that an increased inhibition within the stimulated barrel reduced the magnitude of its excitatory output and accordingly the flow of excitation toward layers II & III and the subsequent spread into adjacent columns. In addition, the period of uncorrelated activity between pathways from the stimulated and nonstimulated whiskers weakens synaptic inputs from in-row whiskers in the stimulated barrel column.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3