Complex Spike-Event Pattern of Transienton-offRetinal Ganglion Cells

Author:

Greschner Martin,Thiel Andreas,Kretzberg Jutta,Ammermüller Josef

Abstract

on-off transient ganglion cells of the turtle retina show distinct spike-event patterns in response to abrupt intensity changes, such as during saccadic eye movements. These patterns consist of two main spike events, with the latency of each event showing a systematic dependency on stimulus contrast. Whereas the latency of the first event decreases monotonically with increasing contrast, as expected, the second event shows the shortest latency for intermediate contrasts and a longer latency for high and low contrasts. These spike-event patterns improve the discrimination of different light-intensity transitions based on ensemble responses of the on-off transient ganglion cell subpopulation. Although the discrimination results are far better than chance using either spike counts or latencies of the first spikes, they are further improved by using properties of the second spike event. The best classification results are obtained when spike rates and latencies of both events are considered in combination. Thus spike counts and temporal structure of retinal ganglion cells carry complementary information about the stimulus condition, and thus spike-event patterns could be an important aspect of retinal coding. To investigate the origin of the spike-event patterns in retinal ganglion cells, two computational models of retinal processing are compared. A linear–nonlinear model consisting of separate filters for on and off response components fails to reproduce the spike-event patterns. A more complex cascade filter model, however, accurately predicts the timing of the spike events by using a combination of gain control loop and spike rate adaptation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3