Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats

Author:

Stewart Courtney E.1ORCID,Kanicki Ariane C.1,Altschuler Richard A.12,King W. M.1

Affiliation:

1. Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan

2. Ann Arbor Department of Veterans Affairs Medical Center, Ann Arbor, Michigan

Abstract

The vestibular system plays a critical role in detection of head movements and is essential for normal postural control. Because of their anatomical proximity to the cochlea, the otolith organs are selectively exposed to sound pressure and are at risk for noise overstimulation. Clinical reports suggest a link between noise exposure and balance problems, but the structural and physiological basis for this linkage is not well understood. The goal of this study was to determine the effects of low-frequency noise (LFN) on the otolith organs by correlating changes in vestibular short-latency evoked potentials (VsEPs) with changes in saccular afferent endings following noise exposure. LFN exposure transiently abolished the VsEP and reduced the number of stained calyces within the sacculus. Although some recovery of the VsEP waveform could be observed within 3 days after noise, at 3 wk recovery was only partial in most animals, consistent with a reduced number of afferents with calyceal endings. These data show that a single intense noise exposure is capable of causing a vestibular deficit that appears to mirror the synaptic deficit associated with hidden hearing loss after noise-induced cochlear injury. NEW & NOTEWORTHY This is the first study to explore the effects of low-frequency high-intensity noise on vestibular short-latency evoked potential (VsEP) responses, which shows a linkage between attenuated noise-induced VsEPs and pathological changes to otolith organ afferents. This finding suggests a potential limitation of the VsEP for evaluation of vestibular dysfunction, since the VsEP measurement may assess the activity of a specific class rather than all afferents.

Funder

U.S. Department of Veterans Affairs (VA)

HHS | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3