Circadian Modulation of Temporal Properties of the Rod Pathway in LarvalXenopus

Author:

Solessio Eduardo,Scheraga David,Engbretson Gustav A.,Knox Barry E.,Barlow Robert B.

Abstract

Circadian clocks are integral components of visual systems. They help adjust an animal's vision to diurnal changes in ambient illumination. To understand how circadian clocks may adapt visual sensitivity, we investigated the spatial and temporal properties of optomotor responses of young Xenopus laevis tadpoles (Nieuwkoop and Faber, developmental stage 48) using a modified 2-alternative preferential-viewing method. We maintained animals in constant darkness and measured temporal sensitivity during their subjective day and night. We found that their behavioral responses can be explained in terms of 2 mechanisms with different temporal properties. The more sensitive mechanism operates at low temporal frequencies and intermediate wavelengths (λmax= 520 nm), properties consistent with rod signals. Threshold for this mechanism is approximately 0.04 photoisomerizations rod−1s−1, consistent with single-photon detection. A less-sensitive mechanism responds to higher temporal frequencies (cutoff = 12 Hz) and has broad spectral sensitivity (370–720 nm), consistent with multiple classes of cone signals. This cone mechanism does not change, but the cutoff frequency of the more sensitive rod mechanism shifts from 0.35 Hz at night to 1.1 Hz during the subjective day, thereby enhancing the animal's sensitivity to dim rapidly changing stimuli. This day–night shift in rod temporal cutoff frequency cycles in complete darkness, characteristic of an endogenous circadian rhythm. The temporal properties of the behaviorally measured rod mechanism correspond closely with those of the electrophysiologically measured retinal response, indicating that the rod signals are modulated at the level of the outer retina.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function;Progress in Retinal and Eye Research;2023-05

2. Circadian Sensation and Visual Perception;Circadian Rhythm - New Insights Into the Physiological and Pathological Implications [Working Title];2021-12-07

3. An Innate Color Preference Displayed by Xenopus Tadpoles Is Persistent and Requires the Tegmentum;Frontiers in Behavioral Neuroscience;2020-05-12

4. Flow sensing in developing Xenopus laevis is disrupted by visual cues and ototoxin exposure;Journal of Comparative Physiology A;2014-11-08

5. A Simple Behavioral Assay for Testing Visual Function in Xenopus laevis;Journal of Visualized Experiments;2014-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3