Spinal Mechanisms Contribute to Differences in the Time to Failure of Submaximal Fatiguing Contractions Performed With Different Loads

Author:

Klass Malgorzata,Lévénez Morgan,Enoka Roger M.,Duchateau Jacques

Abstract

This study compared the mechanisms that limit the time to failure of a sustained submaximal contraction at 20% of maximum when the elbow flexors either supported an inertial load (position task) or exerted an equivalent constant torque against a rigid restraint (force task). The surface electromyogram (EMG), the motor-evoked potential (MEP) in response to transcranial magnetic stimulation (TMS) of the motor cortex, and the Hoffmann reflex (H-reflex) and maximal M-wave (Mmax) elicited by electrical stimulation of the brachial plexus were recorded in biceps brachii during the two tasks. Although the time to failure for the position task was only 44% of that for the force task, the rate of increase of the average EMG (aEMG; % initial MVC) and MEP area (% Mmax) did not differ significantly during the two tasks. At task failure, however, the increases in normalized aEMG and MEP area were significantly ( P < 0.05) greater for the force task (36.4 and 219.9%) than for the position task (22.4 and 141.7%). Furthermore, the superimposed mechanical twitch (% initial MVC), evoked by TMS during a brief MVC of the elbow flexors immediately after task failure, was increased similarly in both tasks. Although the normalized H-reflex area (% Mmax) decreased during the two fatiguing contractions, the reduction was more rapid and greater during the position task (59.8%) compared with the force task (34.7%). Taken together, the results suggest that spinal mechanisms were a major determinant of the briefer time to failure for the position task.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3