Affiliation:
1. Department of Anesthesiology, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850
Abstract
Spinal lamina II (substantia gelatinosa) neurons play an important role in processing of nociceptive information from primary afferent nerves. Anatomical studies suggest that neurons in the outer (lamina IIo) and inner (lamina IIi) zone of lamina II receive distinct afferent inputs. The functional significance of this preferential afferent termination in lamina II remains unclear. In this study, we examined the differential synaptic inputs to neurons in lamina IIo and IIi in response to primary afferent stimulation. Whole cell voltage-clamp recordings were performed on neurons in lamina IIo and IIi of the rat spinal cord slice under visual guidance. Capsaicin (1 μM) significantly increased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in all 27 lamina IIo neurons and significantly increased the amplitude of mEPSCs in 12 of 27 lamina IIo neurons. However, capsaicin only significantly increased the frequency of mEPSCs in 9 of 22 (40.9%) lamina IIi neurons and increased the amplitude of mEPSCs in 6 of these 9 neurons. Furthermore, the peak amplitude of EPSCs, evoked by electrical stimulation of the attached dorsal root, in 40 lamina IIo neurons was significantly greater than that [160.5 ± 16.7 vs. 87.0 ± 10.4 (SE) pA] in 37 lamina IIi neurons. On the other hand, the peak amplitude of evoked inhibitory postsynaptic currents (IPSCs) in 40 lamina IIo neurons was significantly smaller than that (103.1 ± 11.6 vs. 258.4 ± 24.4 pA) in 37 lamina IIi neurons. In addition, the peak amplitudes of both EPSCs and IPSCs, evoked by direct stimulation of lamina II, were similar in lamina IIo and IIi neurons. This study provides new information that stimulation of primary afferents differentially potentiates synaptic inputs to neurons in lamina IIo and IIi. The quantitative difference in excitatory and inhibitory synaptic inputs to lamina IIo and IIi neurons may be important for integration of sensory information from primary afferent nerves.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献