Functional Specialization Within the Cat Red Nucleus

Author:

Horn K. M.1,Pong M.1,Batni S. R.1,Levy S. M.1,Gibson A. R.1

Affiliation:

1. Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013

Abstract

Magnocellular (RNm) and parvicellular (RNp) divisions of the cat red nucleus (RN) project to the cervical spinal cord. RNp projects more heavily to upper cervical levels and RNm projects more heavily to lower levels. The cells in RN are active during reaching and grasping, and the differences in termination suggest that the divisions influence different musculature during this behavior. However, the spinal termination may not reflect function because most rubrospinal terminations are to interneuronal regions, which can influence motor neurons at other spinal levels. To test for functional differences between RNm and RNp, we selectively stimulated RNm and RNp as well as the efferent fibers from each region. Electromyographic activity was recorded from seven muscles of the cat forelimb during reaching. The activity from each muscle was averaged over several thousand stimuli to detect influences of stimulation on muscle activity. Stimulation within the RN produced a characteristic pattern of poststimulus effects. The digit dorsiflexor, extensor digitorum communis (edc), was most likely to show facilitation, and several other muscles showed suppression. The pattern of activation did not differ between RNm and RNp. In contrast, stimulation of RNp fibers favored facilitation of shoulder muscles (spinodeltoideus and supraspinatus), and stimulation of RNm fibers favored facilitation of digit and wrist muscles (edc, palmaris longus, and extensor carpi ulnaris). Fiber stimulation produced few instances of poststimulus suppression. The results from fiber stimulation indicate that the physiological actions of RNm and RNp match their levels of spinal termination. The complex pattern of facilitation and suppression seen with RN stimulation may reflect synaptic actions within the nucleus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cerebellar Influences on Descending Spinal Motor Systems;Handbook of the Cerebellum and Cerebellar Disorders;2021-12-05

2. Corticospinal vs Rubrospinal Revisited: An Evolutionary Perspective for Sensorimotor Integration;Frontiers in Neuroscience;2021-06-11

3. Red nucleus structure and function: from anatomy to clinical neurosciences;Brain Structure and Function;2020-11-12

4. An Implantable System For Chronic In Vivo Electromyography;Journal of Visualized Experiments;2020-04-21

5. The mammalian spinal commissural system: properties and functions;Journal of Neurophysiology;2020-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3