Relationship Between Sensory Stimuli–Elicited IPSPs in Motoneurons and PGO Waves During Cholinergically Induced Muscle Atonia

Author:

Kohlmeier Kristi A.1,López-Rodríguez Faustino1,Morales Francisco R.1,Chase Michael H.1

Affiliation:

1. Department of Physiology, and the Brain Research Institute, UCLA School of Medicine, Los Angeles, California 90095

Abstract

Kohlmeier, Kristi A., Faustino López-Rodrı́guez, Francisco R. Morales, and Michael H. Chase. Relationship between sensory stimuli–elicited IPSPs in motoneurons and PGO waves during cholinergically induced muscle atonia. J. Neurophysiol. 78: 2145–2155, 1997. Inhibitory postsynaptic potentials (IPSPs) can be produced in masseter motoneurons by sensory stimuli after the injection of carbachol into the nucleus pontis oralis (NPO) of α-chloralose–anesthetized cats. We have postulated previously that these IPSPs, which are induced in masseter motoneurons by sensory stimuli, arise as the result of phasic activation of the motor inhibitory system that mediates atonia occurring spontaneously during active sleep. In the present study, we determined that sensory stimuli, which excite different sensory pathways, somatosensory and auditory, also elicit ponto-geniculo–occipital (PGO) waves during the carbachol-induced state. Because the elicitation of PGO waves has been hypothesized to be a central sign of activation of alerting mechanisms, we suggest that these stimuli also excite those CNS structures that are involved in the alerting network. The temporal association of the sensory stimuli-elicited IPSPs and PGO waves also was examined by correlating the intracellular response of masseter motoneurons and the extracellular response of lateral geniculate nuclei neurons to somatosensory and auditory stimuli. Sensory stimuli produced an IPSP that had a similar latency from the foot of the elicited PGO wave as that of spontaneously occurring motoneuron IPSPs and PGO waves that occur during both carbachol-induced muscle atonia and naturally occurring active sleep. In addition, the intensity of the stimulus necessary for elicitation of PGO waves was found to be lower than that required for the elicitation of IPSPs in motoneurons. Additionally, evoked responses in masseter motoneurons during the carbachol-induced state were graded in response to increases in stimulus intensity. The preceding data suggest that some type of processing of sensory input occurs such that only those stimuli that are capable of activating alerting mechanisms involved in the generation of PGO waves result in an increase in activity in the motor inhibitory system. We conclude that there may be a functional link between alerting mechanisms involved in the generation of PGO waves and the motor inhibitory system that generates IPSPs in motoneurons. This functional link may serve to preserve atonia, and thus the state of active sleep, from potentially disruptive PGO-related influences that, during other behavioral states, result in motor activation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3