Activity-Dependent Potentiation of Synaptic Transmission From L30 Inhibitory Interneurons of Aplysia Depends on Residual Presynaptic Ca2+ But Not on Postsynaptic Ca2+

Author:

Fischer Thomas M.1,Zucker Robert S.2,Carew Thomas J.1

Affiliation:

1. Department of Psychology, Yale University, New Haven, Connecticut 06520; and

2. Department of Molecular and Cell Biology, University of California, Berkeley, California 94720

Abstract

Fischer, Thomas M., Robert S. Zucker, and Thomas J. Carew. Activity-dependent potentiation of synaptic transmission from L30 inhibitory interneurons of Aplysia depends on residual presynaptic Ca2+ but not on postsynaptic Ca2+. J. Neurophysiol. 78: 2061–2071, 1997. Activity-induced short-term synaptic enhancement (STE) is a common property of neurons, one that can endow neural circuits with the capacity for rapid and flexible information processing. Evidence from a variety of systems indicates that the expression of STE depends largely on the action of residual Ca2+, which enters the presynaptic terminal during activity. We have shown previously that a Ca2+-dependent STE in the inhibitory synapse between interneurons L30 and L29 in the abdominal ganglion of Aplysia californica has a functional role in regulating the gain of the siphon withdrawal circuit through facilitated recurrent inhibition onto the L29s. In the present paper, we further explore the role of Ca2+ in L30 STE by examining two basic issues: 1) What is the role of residual presynaptic Ca2+ in the maintenance of L30 STE? We examine this question by first inducing STE in the L30s then rapidly buffering presynaptic free calcium through the use of the photoactivated Ca2+ chelator diazo-4, which was preloaded into the L30 neurons. Three forms of STE in the L30s were examined: frequency facilitation (FF), augmentation (AUG), and posttetanic potentiation (PTP). In each case, the activation-induced enhancement of the L30 to L29 synapse was reduced to preactivation levels at the first test pulse following photolysis of diazo-4. 2) What is the role of postsynaptic Ca2+ in the induction of L30 STE? We examine whether there is a postsynaptic requirement of elevated Ca2+ for the induction of L30 STE by first injecting the calcium chelator bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid (BAPTA) into the postsynaptic cell L29 (at levels sufficient to block transmitter release from the L29s), to prevent any increase in postsynaptic intracellular Ca2+ that may occur during L30 (presynaptic) activation. We found that BAPTA injection did not effect either the induction or the time course of FF, AUG, or PTP in the L30s. Taken collectively, our data indicate that all forms of STE in the L30s depend on presynaptic free cytosolic Ca2+ for their maintenance but do not require the elevation of postsynaptic Ca2+ for their induction.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3