Participation of Caudal Fastigial Nucleus in Smooth Pursuit Eye Movements. II. Effects of Muscimol Inactivation

Author:

Robinson Farrel R.1,Straube Andreas2,Fuchs Albert F.1

Affiliation:

1. Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Seattle, Washington 98195-7330; and

2. Department of Neurology, Grosshadern Clinic, University of Munich, 81377 Munich, Germany

Abstract

Robinson, Farrel, R., Andreas Straube, and Albert F. Fuchs. Participation of the caudal fastigial nucleus in smooth pursuit eye movements. II. Effects of muscimol inactivation. J. Neurophysiol. 78: 848–859, 1997. We studied the effect of temporarily inactivating the caudal fastigial nucleus (CFN) in three rhesus macaques trained to make smooth pursuit eye movements. We injected the γ-aminobutyric acid A agonist muscimol into one or both CFNs where we had recorded pursuit-related neurons a few minutes earlier. Inactivating the CFN on one side impaired pursuit in one monkey so severely that it could not follow step-ramp targets moving at 20°/s, the target velocity that we used to test the other two monkeys. We tested this monkey with targets moving at 10°/s. In all three monkeys, unilateral CFN inactivation either increased the acceleration of ipsilateral step-ramp pursuit (in 2 monkeys, to 144 and 220% of normal) or decreased the acceleration of contralateral pursuit (in 1 monkey, to 71% of normal). Muscimol injected into both CFNs in two of the monkeys left both ipsilateral and contralateral acceleration nearly normal in both monkeys (101% of normal). Unilateral CFN inactivation also impaired the velocity of maintained pursuit as the monkeys tracked a target moving at a constant velocity or oscillating sinusoidally. Averaged across both types of movements in all three monkeys, gains for ipsilateral, contralateral, upward, and downward pursuit were 94, 67, 84, and 73% of normal, respectively. Unilateral CFN inactivation also impaired the monkeys' ability to suppress their vestibuloocular reflex (VOR). Averaged across the two monkeys VOR gain during suppression increased from 0.06 to 0.25 during yaw rotation and from 0.21 to 0.59 during pitch rotation. Bilateral CFN inactivation reduced pursuit gains in all directions more than unilateral injection did. In the two monkeys tested, ipsilateral, contralateral, upward, and downward gains went from 94, 86, 85, and 74% of normal, respectively, after we inactivated one CFN to 88, 73, 80, and 64% of normal after we also inactivated the second CFN. We can explain many, but not all, of the effects of CFN activation on smooth pursuit with the behavior of CFN neurons, and the assumption that the activity of each CFN neuron helps drive pursuit movements in the direction that best activates that neuron. We conclude that the CFN, like the flocculus-ventral paraflocculus, is a cerebellar region involved in control of smooth pursuit.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3