Blocking GABAA Inhibition Reveals AMPA- and NMDA-Receptor-Mediated Polysynaptic Responses in the CA1 Region of the Rat Hippocampus

Author:

Crépel V.1,Khazipov R.1,Ben-Ari Y.1

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale U 29; and Université René Descartes, 75674 Paris cedex 14, France

Abstract

Crépel, V., R. Khazipov, and Y. Ben-Ari. Blocking GABAA inhibition reveals AMPA- and NMDA-receptor-mediated polysynaptic responses in the CA1 region of the rat hippocampus. J. Neurophysiol. 77: 2071–2082, 1997. We have investigated the conditions required to evoke polysynaptic responses in the isolated CA1 region of hippocampal slices from Wistar adult rats. Experiments were performed with extracellular and whole cell recording techniques. In the presence of bicuculline (10 μM), 6-cyano-7-nitroquinoxaline-2-3-dione (10 μM), glycine (10 μM), and a low external concentration of Mg2+ (0.3 mM), electrical stimulation of the Schaffer collaterals/commissural pathway evoked graded N-methyl-d-aspartate (NMDA)-receptor-mediated late field potentials in the stratum radiatum of the CA1 region. These responses were generated via polysynaptic connections because their latency varied strongly and inversely with the stimulation intensity and they were abolished by a high concentration of divalent cations (7 mM Ca2+). These responses likely were driven by local collateral branches of CA1 pyramidal cell axons because focal application of tetrodotoxin (30 μM) in the stratum oriens strongly reduced the late synaptic component and antidromic stimulation of CA1 pyramidal cells could evoke the polysynaptic response. Current-source density analysis suggested that the polysynaptic response was generated along the proximal part of the apical dendrites of CA1 pyramidal cells (50–150 μm below the pyramidal cell layer in the stratum radiatum). In physiological concentration of Mg2+ (1.3 mM), the pharmacologically isolated NMDA-receptor-mediated polysynaptic response was abolished. In control artificial cerebrospinal fluid (with physiological concentration of Mg2+), bicuculline (10 μM) generated a graded polysynaptic response. Under these conditions, this response was mediated both by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/NMDA receptors. In the presence of d-2-amino-5-phosphonovalerate (50 μM), the polysynaptic response could be mediated by AMPA receptors, although less efficiently. In conclusion, suppression of γ-aminobutyric acid-A inhibition reveals glutamate receptor-mediated network-driven events in the isolated CA1 region. These polysynaptic responses are mediated by AMPA and/or NMDA receptors depending on the pharmacological conditions and the external concentration of Mg2+ used. We suggest that these responses are driven by local recurrent collaterals of CA1 pyramidal cells.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3