Eye Position Effects in Monkey Cortex. I. Visual and Pursuit-Related Activity in Extrastriate Areas MT and MST

Author:

Bremmer F.1,Ilg U. J.1,Thiele A.1,Distler C.1,Hoffmann K.-P.1

Affiliation:

1. Department of Zoology and Neurobiology, Ruhr University Bochum, D-44780 Bochum, Germany

Abstract

Bremmer, F., U. J. Ilg, A. Thiele, C. Distler, and K.-P. Hoffmann. Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. J. Neurophysiol. 77: 944–961, 1997. We studied the effect of eye position on visual and pursuit-related activity in neurons in the superior temporal sulcus of the macaque monkey. Altogether, 109 neurons from the middle temporal area (area MT) and the medial superior temporal area (area MST) were tested for influence of eye position on their stimulus-driven response in a fixation paradigm. In this paradigm the monitored eye position signal was superimposed onto the stimulus control signal while the monkey fixated at different locations on a screen. This setup guaranteed that an optimized stimulus was moved across the receptive field at the same retinal location for all fixation locations. For 61% of the MT neurons and 82% of the MST neurons the stimulus-induced response was modulated by the position of the eyes in the orbit. Directional selectivity was not influenced by eye position. One hundred sixty-eight neurons exhibited direction-specific responses during smooth tracking eye movements and were tested in a pursuit paradigm. Here the monkey had to track a target that started to move in the preferred direction with constant speed from five different locations on the screen in random order. Pursuit-related activity was modulated by eye position in 78% of the MT neurons as well as in 80% of the MST neurons tested. Neuronal activity varied linearly as a function of both horizontal and vertical eye position for most of the neurons tested in both areas, i.e., two-dimensional regression planes could be approximated to the responses of most of the neurons. The directions of the gradients of these regression planes correlated neither with the preferred stimulus direction tested in the fixation paradigm nor with the preferred tracking direction in the pursuit paradigm. Eighty-six neurons were tested with both the fixation and the pursuit paradigms. The directions of the gradients of the regression planes fit to the responses in both paradigms tended to correlate with each other, i.e., for more than two thirds of the neurons the angular difference between both directions was less than ±90°. The modulatory effect of the position of the eyes in the orbit proved to balance out at the population level for neurons in areas MT and MST, tested with the fixation as well as the pursuit paradigm. Results are discussed in light of the hypothesis of an ongoing coordinate transformation of the incoming sensory signals into a nonretinocentric representation of the visual field.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3