Eye Movement Deficits After Ibotenic Acid Lesions of the Nucleus Prepositus Hypoglossi in Monkeys. I. Saccades and Fixation

Author:

Kaneko Chris R. S.1

Affiliation:

1. Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Seattle, Washington 98195

Abstract

Kaneko, Chris R. S. Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J. Neurophysiol. 78: 1753–1768, 1997. It has been suggested that the function of the nucleus prepositus hypoglossi (nph) is the mathematical integration of velocity-coded signals to produce position-coded commands that drive abducens motoneurons and generate horizontal eye movements. In early models of the saccadic system, a single integrator provided not only the signal that maintained steady gaze after a saccade but also an efference copy of eye position, which provided a feedback signal to control the dynamics of the saccade. In this study, permanent, serial ibotenic acid lesions were made in the nph of three rhesus macaques, and their effects were studied while the alert monkeys performed a visual tracking task. Localized damage to the nph was confirmed in both Nissl and immunohistochemically stained material. The lesions clearly were correlated with long-lasting deficits in eye movement. The animals' ability to fixate in the dark was compromised quickly and uniformly so that saccades to peripheral locations were followed by postsaccadic centripetal drift. The time constant of the drift decreased to approximately one-tenth of its normal values but remained 10 times longer than that attributable to the mechanics of the eye. In contrast, saccades were affected minimally. The results are more consistent with models of the neural saccade generator that use separate feedback and position integrators than with the classical models, which use a single multipurpose element. Likewise, the data contradict models that rely on feedback from the nph. In addition, they show that the oculomotor neural integrator is not a single neural entity but is most likely distributed among a number of nuclei.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3