Reversal of LTP in the Hippocampal Afferent Fiber System to the Prefrontal Cortex In Vivo With Low-Frequency Patterns of Stimulation That Do Not Produce LTD

Author:

Burette F.1,Jay T. M.1,Laroche S.1

Affiliation:

1. Laboratoire de Neurobiologie de l'Apprentissage et de la Mémoire, Centre National de la Recherche Scientifique URA 1491, Université Paris Sud, 91405 Orsay, France

Abstract

Burette, F., T. M. Jay, and S. Laroche. Reversal of LTP in the hippocampal afferent fiber system to the prefrontal cortex in vivo with low-frequency patterns of stimulation that do not produce LTD. J. Neurophysiol. 78: 1155–1160, 1997. We examined the efficacy of several patterns of low-frequency stimulation for producing long-term depression (LTD) or depotentiation in the hippocampal fiber pathway to the prefrontal cortex in the anesthetized rat. Field potentials elicited by stimulation of the CA1/subicular region of the ventral hippocampus were recorded in the prelimbic area of the prefrontal cortex. We found no evidence that low-frequency trains (0.5–1 Hz), consisting of either single pulses, paired pulses (35-ms interpulse interval), or two-pulse bursts (5-ms interval), produce LTD in the prefrontal cortex. In contrast, all three stimulus protocols were found to induce a small-amplitude, persistent potentiation of the amplitude of the negative wave of the field response recorded in the prefrontal cortex. We also examined the ability of patterns of low-frequency stimulation to produce depotentiation of previously established long-term potentiation (LTP). Although low-frequency stimulation with single pulses or paired pulses was ineffective, we found that the two-pulse burst protocol selectively produced a rapid reversal of LTP in the hippocampo-prefrontal cortex pathway. Depotentiation is reversible and can be induced >2 h after the induction of LTP. Repeated trains failed to decrease the prefrontal cortex response below the original, unpotentiated level. These findings demonstrate the existence of a depotentiation mechanism that is capable of exerting powerful control over ongoing or recently induced synaptic plasticity in hippocampocortical connections in vivo.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3