Electrophysiological Properties of Rat Pontine Nuclei Neurons In Vitro II. Postsynaptic Potentials

Author:

Möck Martin1,Schwarz Cornelius1,Thier Peter1

Affiliation:

1. Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik Tübingen, 72076 Tubingen, Germany

Abstract

Möck, Martin, Cornelius Schwarz, and Peter Thier. Electrophysiological properties of rat pontine nuclei neurons in vitro. II. Postsynaptic potentials. J. Neurophysiol. 78: 3338–3350, 1997. We investigated the postsynaptic responses of neurons of the rat pontine nuclei (PN) by performing intracellular recordings in parasagittal slices of the pontine brain stem. Postsynaptic potentials (PSPs) were evoked by brief (0.1 ms) negative current pulses (10–250 μA) applied to either the cerebral peduncle or the pontine tegmentum. First, excitatory postsynaptic potentials (EPSPs) could be evoked readily from peduncular stimulation sites. These EPSPs exhibited short latencies, a nonlinear increment in response to increased stimulation currents, and an unconventional dependency on the somatic membrane potential. Pharmacological blockade of the synaptic transmission using 6,7-dinitroquinoxaline-2,3-dione and d,l-2-amino-5-phosphonovaleric acid, selective antagonists of the α-amino-3-hydroxy-5-methyl-4-isoxazilepropionate- (AMPA) and the N-methyl-d-aspartate (NMDA)-type glutamate receptors, showed that these EPSPs were mediated exclusively by excitatory amino acids via both AMPA and NMDA receptors. Moreover, the pharmacological experiments indicated the existence of voltage-sensitive but NMDA receptor-independent amplification of EPSPs. Second, stimulations at peduncular and tegmental sites also elicited inhibitory postsynaptic potentials (IPSPs) in a substantial proportion of pontine neurons. The short latencies of all IPSPs argued against the participation of inhibitory interneurons. Their sensitivity to bicuculline and reversal potentials around −70 mV suggested that they were mediated by γ-aminobutyric acid-A (GABAA) receptors. In addition to single PSPs, sequences consisting of two to four distinct EPSPs could be recorded after stimulation of the cerebral peduncle. Most remarkably, the onset latencies of the following EPSPs were multiples of the first one indicating the involvement of intercalated synapses. Finally, we used the classic paired-pulse paradigm to study whether the temporal structure of inputs influences the synaptic transmission onto pontine neurons. Pairs of electrical stimuli applied to the cerebral peduncle resulted in a marked enhancement of the amplitude of the second EPSP for interstimulus intervals of 10–100 ms. Delays >200 ms left the EPSP amplitude unaltered. These data provide evidence for a complex synaptic integration and an intrinsic connectivity within the PN too elaborate to support the previous notion that the PN are simply a relay station.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3