Affiliation:
1. Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; and
2. Department of Health and Sport Sciences, Chiba University, Chiba 263, Japan
Abstract
Zehr, E. P., T. Komiyama, and R. B. Stein. Cutaneous reflexes during human gait: electromyographic and kinematic responses to electrical stimulation. J. Neurophysiol. 77: 3311–3325, 1997. The functions of ipsilateral cutaneous reflexes were studied with short trains of stimuli presented pseudorandomly to the superficial peroneal (SP) and tibial nerves during human gait. Electromyograms (EMGs) of tibialis anterior (TA), soleus, lateral and medial gastrocnemius, vastus lateralis (VL), and biceps femoris (BF) muscle were recorded, together with ankle and knee joint angles. Net reflex EMG responses were quantified in each of the 16 parts of the step cycle according to a recently developed technique. After SP nerve stimulation, TA muscle showed a significant suppression during swing phase that was highly correlated to ankle plantarflexion. BF and VL muscles were both excited throughout swing and significantly correlated to knee flexion during early swing. Tibial nerve stimulation caused dorsiflexion during late stance, but plantarflexion during late swing. We argue that SP nerve reflexes are indicative of a stumbling corrective response to nonnoxious electrical stimulation in humans. The correlated kinematic responses after tibial nerve stimulation may allow smooth movement of the swing leg so as to prevent tripping during swing and to assist placing and weight acceptance at the beginning of stance.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
222 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献