Mechanisms of Onset Responses in Octopus Cells of the Cochlear Nucleus: Implications of a Model

Author:

Cai Yidao1,Walsh Edward J.1,McGee JoAnn1

Affiliation:

1. Developmental Auditory Physiology Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131

Abstract

Cai, Yidao, Edward J. Walsh, and JoAnn McGee. Mechanisms of onset responses in octopus cells of the cochlear nucleus: implications of a model. J. Neurophysiol. 78: 872–883, 1997. The octopus cells of the posteroventral cochlear nucleus receive inputs from auditory-nerve fibers and form one of the major ascending auditory pathways. They respond to acoustic and electrical stimulation transiently and are believed to carry temporal information in the precise timing of their action potentials. The mechanism whereby onset responses are generated is not clear. Proposals aimed at elucidating the mechanism range from neural circuitry and/or inhibition, “depolarization block” (or inactivation of Na+ channels), and the involvement of a 4-aminopyridine (4-AP)–sensitive, low-threshold channel (KLT). In the present study, we used a compartment model to investigate possible mechanisms. The model cell contains a soma, an axon, and four passive dendrites. Four kinds of ionic channels were included in the soma compartment: the Hodgkin-Huxley–like Na+ and K+ channels, a 4-AP–sensitive, low-threshold channel, KLT, and a Cs+-sensitive, hyperpolarization-activated inward rectifier, I h . DC currents and half-wave–rectified sinewaves were used as stimuli. Our results showed that an onset response can be generated in the absence of neuronal circuitry of any form, thus suggesting that the onset response in octopus cells is regulated intrinsically. Among the many factors involved, low-input impedance, partly contributed by I h , appears to be essential to the basic onset response pattern; also, the KLT conductance plays a major role, whereas the inactivation of Na+ channels probably plays only a secondary role. The dynamics of I h also can modify the response pattern, but due to its slow kinetics, its role is probably limited to longer-term regulation under the conditions simulated in this study.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3