Local and Propagated Vascular Responses Evoked by Focal Synaptic Activity in Cerebellar Cortex

Author:

Iadecola Costantino1,Yang Guang1,Ebner Timothy J.2,Chen Gang2

Affiliation:

1. Laboratory of Cerebrovascular Biology and Stroke, Department of Neurology and

2. Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455

Abstract

Iadecola, Costantino, Guang Yang, Timothy J. Ebner, and Gang Chen. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J. Neurophysiol. 78: 651–659, 1997. We investigated the local and remote vascular changes evoked by activation of the cerebellar parallel fibers (PFs). The PFs were stimulated (25–150 μA, 30 Hz) in halothane-anesthetized rats equipped with a cranial window. The changes in arteriolar and venular diameter produced by PF stimulation were measured with the use of a videomicroscopy system. Cerebellar blood flow (BFcrb) was monitored by laser Doppler flowmetry and the field potentials evoked by PF stimulation were recorded with the use of microelectrodes. PF stimulation increased the diameter of local arterioles (+26 ± 1%, mean ± SE) in the activated folium ( n = 10, P < 0.05). The vasodilation was greatest in smaller arterioles (16.5 ± 0.8 μm), was graded with the intensity of stimulation, and was less marked than the vasodilation produced by hypercapnia in comparably sized vessels (+58 ± 5%, CO2 pressure = 50–60 mmHg, n = 8). In addition, the vasodilation was greatest along the horizontal beam of activated PFs and was reduced in arterioles located away from the stimulated site in a rostrocaudal direction. The increases in vascular diameter were associated with increases in BFcrb in the activated area (+55 ± 4%, n = 5). PF stimulation increased vascular diameter (+10 ± 0.5%, n = 10) also in larger arterioles (30–40 μm) located in the folium adjacent to that in which the PFs were stimulated. Higher-order branches of these arterioles supplied the activated area. No field potentials were evoked by PF stimulation in the area where these upstream vessels were located. The data suggest that increased synaptic activity in the PF system produces a “local” hemodynamic response mediated by synaptic release of vasoactive agents and a “remote” response that is propagated to upstream arterioles from vessels residing in the activated folium. These propagated vascular responses are important in the coordination of segmental vascular resistance that is required to increase flow effectively during functional brain hyperemia.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3