Circuitry Underlying AntiOpioid Actions of Orphanin FQ in the Rostral Ventromedial Medulla

Author:

Heinricher M. M.12,McGaraughty S.1,Grandy D. K.3

Affiliation:

1. Division of Neurosurgery,

2. Department of Physiology and Pharmacology, and

3. Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201

Abstract

Heinricher, M. M., S. McGaraughty, and D. K. Grandy. Circuitry underlying antiopioid actions of orphanin FQ in the rostral ventromedial medulla. J. Neurophysiol. 78: 3351–3358, 1997. Several laboratories recently identified a 17 amino-acid peptide, termed “nociceptin” or “orphanin FQ (OFQ)”, as the endogenous ligand for the LC132 (or “opioid receptor-like1”) receptor. Taken together with the fact that the cellular effects of OFQ are to a large extent opioid-like, the close relationship between the LC132 receptor and known opioid receptors raised expectations that the behavioral effects of this peptide would resemble those of opioids. However studies of the role of OFQ in nociception have not provided a unified view. The aim of the present study was to use a combination of electrophysiological and pharmacological techniques to characterize the actions of OFQ in a brain region in which the circuitry mediating the analgesic actions of opioids has been relatively well characterized, the rostral ventromedial medulla (RVM). Single-cell recording was combined with opioid administration and local infusion of OFQ in the RVM of rats lightlyanesthetized with barbiturates. The tail flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of physiologically identifiable RVM neurons with distinct responses to opioids have been characterized. off-cells are activated, although indirectly, by opioids, and there is strong evidence that this activation is crucial to opioid antinociception. on-cells, thought to enable nociception, are directly inhibited by opioids. Cells of a third class, neutral cells, do not respond to opioids and whether or not they have any role in nociceptive modulation remains an open question. OFQ infused within the RVM profoundly suppressed the firing of all classes of RVM neurons, blocking opioid-induced activation of off-cells. The antinociceptive effects of a μ-opioid agonist infused at the same site were significantly attenuated in these animals. Those of systemically administered morphine, which can produce its antinociceptive effects by acting at a number of CNS sites, were not blocked by RVM OFQ. Inasmuch as activation of off-cells can account for the antinociceptive action of opioids within the RVM, these results demonstrate that, at least within the medulla, OFQ can exert a functional “antiopioid” effect by suppressing firing of this cell class. However to the extent that antinociceptive and pronociceptive outflows from various brain regions involved in both transmission and modulation of nociception are active under different conditions, focal application of OFQ in different regions could potentially produce either hypalgesia or hyperalgesia.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3