Simulated Recruitment of Medial Rectus Motoneurons by Abducens Internuclear Neurons: Synaptic Specificity vs. Intrinsic Motoneuron Properties

Author:

Dean Paul1

Affiliation:

1. Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom

Abstract

Dean, Paul. Simulated recruitment of medial rectus motoneurons by abducens internuclear neurons: synaptic specificity vs. intrinsic motoneuron properties. J. Neurophysiol. 78: 1531–1549, 1997. Ocular motoneuron firing rate is linearly related to conjugate eye position with slope K above recruitment threshold θ. Within the population of ocular motoneurons K increases as θ increases. These differences in firing rate between motoneurons might be determined either by the intrinsic properties of the motoneurons, or by differences in synaptic input to them, or by a combination of the two. This question was investigated by simulating the input signal to medial rectus motoneurons (MR-MNs) from internuclear neurons of the abducens nucleus (INNs). INNs were represented as input nodes in a two-layer neural net, each with weighted connections to every output node representing an MR-MN. Individual simulated MR-MNs were assigned parameters corresponding to an intrinsic current threshold IRand an intrinsic frequency-current ( f-I) slope γ. Their firing rates were calculated from these parameters, together with the effective synaptic current produced by their synaptically weighted INN inputs, with the use of assumptions employed in computer simulations of spinal motoneuron pools. The experimentally observed firing rates of MR-MNs served as training data for the net. The following two training conditions were used: 1) synaptic weights were fixed and the intrinsic parameters of the MR-MNs were allowed to vary, corresponding to the situation in which each MR-MN receives a common synaptic drive and 2) intrinsic MR-MN properties were fixed and synaptic weights were allowed to vary. In each case, the varying quantities were trained with a form of gradient descent error reduction. The simulations revealed the following three problems with the common-drive model: 1) the recruitment of INNs produced nonlinear responses in MR-MNs with low θs; 2) the range of IRs required to reproduce the observed range of θ were generally larger than those measured experimentally for cat ocular motoneurons; and 3) the intrinsic f-I slope γ increased with IR. Experimental data from cat indicate that γ decreases with IR. When synaptic weights were allowed to vary, all three problems with the common-drive model were overcome. This required MR-MNs receiving selective input from INNs with similar firing rate thresholds. These results suggest that the differences in firing rate properties among MR-MNs in relation to steady-state eye position cannot be derived from their intrinsic properties alone but result at least partly from differences in their synaptic inputs. An MR-MN's individual set of synaptic inputs constitutes, in effect, a premotor receptive field.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3