Spatial and Temporal Integration of Signals in Foveal Line Orientation

Author:

Westheimer Gerald1,Ley Eric J.1

Affiliation:

1. Division of Neurobiology, University of California, Berkeley, California 94720-3200

Abstract

Westheimer, Gerald and Eric J. Ley. Spatial and temporal integration of signals in foveal line orientation. J. Neurophysiol. 77: 2677–2684, 1997. The discrimination of the orientation of a line improves with line length, reaching an optimum when a foveal line is ∼0.5° long. We studied the effect of eliminating sections of the line, of displacing them out of alignment, and of delaying them. Orientation discrimination thresholds are only a little elevated when a 25-arcmin line is replaced by three equally spaced collinear 5-arcmin segments. Two collinear 5-arcmin segments show better thresholds than a single one when they are separated by as much as 20 arcmin. But thresholds are impaired by bringing line segments out of collinearity by as little as 1 arcmin. Asynchrony of up to 50 ms can be tolerated, but when the middle segment of a three-line pattern is delayed by ∼100 ms there is active inhibition, thresholds being now higher than when the middle segment is absent. It is concluded that for signals to address the orientation discrimination mechanism optimally, they have to be contained inside a narrow spatial corridor and be presented within a time window of ∼50 ms, but that some spatial summation can take place over a length of ≥0.5° in the fovea. Because short lines made of black and white collinear segments do not have good orientation thresholds, whereas longer and interrupted lines do, it is concluded that what is involved is potentiating interaction between collinearly arranged neurons with identical orientation selectivity rather than summation of signals within the receptive fields of single neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3