Motor Patterns and Kinematics During Backward Walking in the Pacific Giant Salamander: Evidence for Novel Motor Output

Author:

Ashley-Ross Miriam A.1,Lauder George V.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, California 92697

Abstract

Ashley-Ross, Miriam A. and George V. Lauder. Motor patterns and kinematics during backward walking in the Pacific Giant Salamander: evidence for novel motor output. J. Neurophysiol. 78: 3047–3060, 1997. Kinematic and motor patterns during forward and backward walking in the salamander Dicamptodon tenebrosus were compared to determine whether the differences seen in mammals also apply to a lower vertebrate with sprawling posture and to measure the flexibility of motor output by tetrapod central pattern generators. During treadmill locomotion, electromyograms (EMGs) were recorded from hindlimb muscles of Dicamptodon while simultaneous high-speed video records documented movement of the body, thigh, and crus and allowed EMGs to be synchronized to limb movements. In forward locomotion, the trunk was lifted above the treadmill surface. The pelvic girdle and trunk underwent smooth side-to-side oscillations throughout the stride. At the beginning of the stance phase, the femur was protracted and the knee joint extended. The knee joint initially flexed in early stance and then extended as the foot pushed off in late stance, reaching maximum extension just before foot lift-off. The femur retracted steadily throughout the stance. In the swing phase, the femur rapidly protracted, and the leg was brought forward in an “overhand crawl” motion. In backward walking, the body frequently remained in contact with the treadmill surface. The pelvic girdle, trunk, and femur remained relatively still during stance phase, and most motion occurred at the knee joint. The knee joint extended throughout most of stance, as the body moved back, away from the stationary foot. The knee flexed during swing. Four of five angles showed significantly smaller ranges in backward than in forward walking. EMGs of forward walking showed that ventral muscles were coactive, beginning activity just before foot touchdown and ceasing during the middle of stance phase. Dorsal muscles were active primarily during swing. Backward locomotion showed a different pattern; all muscles except one showed primary activity during the swing phase. This pattern of muscle synergy in backward walking never was seen in forward locomotion. Also, several muscles demonstrated lower burst rectified integrated areas (RIA) or durations during backward locomotion. Multivariate statistical analysis of EMG onset and RIA completely separated forward and backward walking along the first principal component, based on higher RIAs, longer durations of muscle activity, and greater synergy between ventral muscles during early stance in forward walking. Backward walking in Dicamptodon uses a novel motor pattern not seen during forward walking in salamanders or during any other locomotor activity in previously studied tetrapods. The central neuronal mechanisms mediating locomotion in this primitive tetrapod are thus capable of considerable plasticity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3