Affiliation:
1. Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, Colorado 80523
Abstract
Wuarin, Jean-Pierre. Glutamate microstimulation of local inhibitory circuits in the supraoptic nucleus from rat hypothalamus slices. J. Neurophysiol. 78: 3180–3186, 1997. The hypothesis of a local inhibitory input to the hypothalamic supraoptic nucleus was tested with combined glutamate microstimulation and whole cell patch-clamp recordings in slices from rat hypothalamus. Synaptic activity in supraoptic magnocellular neuroendocrine cells (MNCs) was monitored and glutamate microdrops were applied in the perinuclear region of the supraoptic nucleus to evoke firing of action potentials in putative presynaptic inhibitory cells. The effect of glutamate microdrops applied in the perinuclear region was tested on 57 supraoptic MNCs. In control conditions, spontaneous excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic currents were observed at resting membrane potential in all MNCs tested. Glutamate microstimulation evoked an abrupt increase in the frequency and size of spontaneous IPSCs in eight MNCs. Forty-nine MNCs did not show any change in the inhibitory synaptic input. Microapplication of glutamate in the periphery of the supraoptic nucleus did not modify the amplitude or the frequency of spontaneous EPSCs in any of the 57 MNCs tested. In the group of eight MNCs that responded to glutamate microstimulation by an increase in inhibitory input, two types of responses were observed. Four MNCs showed an increase in both size and frequency of spontaneous IPSCs through the entire range of amplitude. In the other four MNCs, local glutamate stimulation produced a dramatic increase in the size of IPSCs and a lesser increase in the frequency of the smaller IPSCs. The potential effect of the glutamate-evoked increase in inhibitory input on the firing activity of MNCs was tested in current-clamp conditions. Intracellular current injection was applied to evoke firing of action potentials in six MNCs that had responded to local glutamate microstimulation by an increase in inhibitory input. Glutamate microdrop applications inhibited the evoked action potential firing in all six cells. These results suggest 1) that local inhibitory interneurons are present in the periphery of the supraoptic nucleus, 2) that they contain functional glutamate receptors, 3) that they form inhibitory synapses with supraoptic MNCs, and 4) that activation of these interneurons inhibits firing in MNCs. These results support the hypothesis that local inhibitory interneurons play a important role in the firing activity of supraoptic MNCs.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献