Postural Control of Three-Dimensional Prehension Movements

Author:

Desmurget Michel12,Prablanc Claude2

Affiliation:

1. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; and

2. Vision et Motricité, Institut National de la Santé et de la Recherche Médicale Unité 94, 69500 Bron, France

Abstract

Desmurget, Michel and Claude Prablanc. Postural control of three-dimensional prehension movements. J. Neurophysiol. 77: 452–464, 1997. This experiment was carried out to test the hypothesis that three-dimensional upper limb movements could be initiated and controlled in the joint space via a mechanism comparing an estimate of the current postural state of the upper arm with a target value determined by one specific inverse static transform converting the coordinates of the object into a set of arm, forearm, and wrist angles. This hypothesis involves two main predictions: 1) despite joint redundancy, the posture reached by the upper limb should be invariant for a given context; and 2) a movement programmed in joint space should exhibit invariant characteristics of the joint covariation pattern as well as a corresponding variable hand path curvature in the task space. To test these predictions, we examined prehension movements toward a cylindrical object presented at a fixed spatial location and at various orientations without vision of the moving limb. Once presented, the object orientation was either kept constant (unperturbed trials) or suddenly modified at movement onset (perturbed trials). Three-dimensional movement trajectories were analyzed in both joint and task spaces. For the unperturbed trials, the task space analysis showed a variable hand path curvature depending on object orientation. The joint space analysis showed that the seven final angles characterizing the upper limb posture at hand-to-object contact varied monotonically with object orientation. At a dynamic level, movement onset and end were nearly identical for all joints. Moreover, for all joints having a monotonic variation, maximum velocity occurred almost simultaneously. For the elbow, the only joint presenting a reversal, the reversal was synchronized with the time to peak velocity of the other joint angles. For the perturbed trials, a smooth and complete compensation of the movement trajectory was observed in the task space. At a static level the upper limb final posture was identical to that obtained when the object was initially presented at the orientation following the perturbation. This result was particularly remarkable considering the large set of comfortable postures allowed by joint redundancy. At a dynamic level, the joints' covariation pattern was updated to reach the new target posture. The initial synergies were not disrupted by the perturbation, but smoothly modified, the different joints' movements ending nearly at the same time. Taken together, these results support the hypothesis that prehension movements are initiated and controlled in the joint space on the basis of a joint angular error vector rather than a spatial error vector.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A guide to inter-joint coordination characterization for discrete movements: a comparative study;Journal of NeuroEngineering and Rehabilitation;2023-09-30

2. Human-Centered Functional Task Design for Robotic Upper-Limb Rehabilitation;2023 International Conference on Rehabilitation Robotics (ICORR);2023-09-24

3. Motor invariants in action execution and perception;Physics of Life Reviews;2023-03

4. Motor control as the control of perception;The Interdisciplinary Handbook of Perceptual Control Theory, Volume II;2023

5. Identification of inverse kinematic parameters in redundant systems: Towards quantification of inter-joint coordination in the human upper extremity;PLOS ONE;2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3