Intrinsic NMDA-Induced Oscillations in Motoneurons of an Adult Vertebrate Spinal Cord Are Masked by Inhibition

Author:

Rioult-Pedotti Mengia-Seraina1

Affiliation:

1. Department of Biology, Yale University, New Haven, Connecticut 06520-8103

Abstract

Rioult-Pedotti, Mengia-Seraina. Intrinsic NMDA induced oscillations in motoneurons of an adult vertebrate spinal cord are masked by inhibition. J. Neurophysiol. 77: 717–730, 1997. Low-frequency membrane potential oscillations were induced in motoneurons (MNs) of isolated hemisected frog spinal cords during N-methyl-d-aspartate (NMDA) application. Oscillations required the presence of physiological Mg2+ and preincubation with strychnine, whereas incubation with bicuculline or phaclofen was not effective. Oscillations were evident in intracellular recordings from single MNs and simultaneous extracellular recordings from lumbar ventral roots. In Mg2+-free solution, MNs exhibited irregular transient membrane potential depolarizations that were blocked by d,l-2-amino-5-phosphonopentanoic acid (APV) but not by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Generation and maintenance of membrane potential oscillations required specific NMDA receptor activation. Oscillations were antagonized by APV but not by CNQX. Strychnine preincubation was required for NMDA to induce oscillations, but was not critical in maintaining them, because oscillations persisted after removal of strychnine. Therefore oscillations are suggested to be an inherent property of the spinal neuronal circuitry. Tetrodotoxin (TTX) blocked spike activity and had a bimodal effect on membrane potential oscillations. Oscillations initially were blocked by TTX, but reappeared spontaneously after 10–40 min. This suggests that maintenance of oscillations, once evoked, does not involve MN firing. Na+ entry through TTX-insensitive Na+ channels and/or NMDA receptor channels, transmembrane Ca2+ flux, Ca2+ release from intracellular stores, and Ca2+ activated K+ channels were critical in controlling the amplitude and frequency of membrane potential oscillations. It is hypothesized that these unmasked intrinsic oscillations in adult frog spinal cord MNs may represent a premetamorphic spinal oscillator involved in tadpole swimming that becomes suppressed during metamorphosis as strychnine-sensitive inhibition becomes more pronounced.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3